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ABSTRACT

Leaves of the edible passion fruit plant, Passiflora edulis, contain benzylic â-D-allopyranosides 1 and 2, representatives of a rare class of
natural glycosides with D-allose as the only sugar constituent. The glycoside 1 is the first known cyanogenic glycoside containing a sugar
different from D-glucose attached directly to the cyanohydrin center. Asymmetric perturbation of the 1Lb transition of the benzene chromophore
was shown to be useful for determination of absolute configuration of the cyanohydrin center of aromatic cyanogenic glycosides.

Glycosides form a very large and diverse group of natural
products, contributing to the immense chemical diversity of
secondary plant metabolites.2 A vast majority of natural
glycosides containâ-D-glucopyranosyl as the only sugar
residue and are formed by a direct glucosyl transfer3,4 from
uridinediphosphoglucose (UDP-glucose) to a variety of
aglycones, in particular with phenylpropanoid, polyacetate,
or terpenoid structure.2 Sometimes, a second sugar different
from D-glucose is attached to one of the hydroxy groups of
the glucose residue. However, glycosides containing a single
monosaccharide residue other thanâ-D-glucopyranose are
very rare.2 This demonstrates the universal occurrence of the
glucosylation mechanism employing UDP-glucose in plants.

Herein, we report on the isolation of two new natural
products bearing theâ-D-allopyranose residue,1 and2, along

with the classical5 â-D-glucopyranoside, prunasin (3), from
leaves ofPassiflora edulisSims (Passifloraceae), the plant
that yields the edible passion fruit. The glycosides1 and3
are cyanogenic glycosides,5 representing a group of natural
products which is of pertinent interest as antinutritional plant
constituents6 and as chemicals involved in plant-insect
interactions.7 The ratio between1 and3 in the plant material
was 4:1. The presence of cyanogenic glycosides derived from
phenylalanine inPassiflora edulis8 is unexpected, as aliphatic
glycosides derived from valine, isoleucine, and 2-cyclopent-
enylglycine are characteristic cyanogens of the plant family
Passifloraceae.9,10 Moreover,1 is the first cyanogenicâ-D-
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allopyranoside to be described11 and indeed the only known
cyanogenic glycoside containing a single sugar residue
different from D-glucose.5 In accordance with tradition
followed within the field, we propose the name passiedulin
for the new glycoside1.

The structures1 and 2 follow readily from NMR spec-
troscopic data.12,13 Thus, the1H NMR spectra show spin-
spin coupling patterns of aâ-hexopyranose moiety with H-1,

H-2, H-4, and H-5 axial and H-3 equatorial. That the
configuration of the cyanohydrin center of1 is the same as
that of 3, i.e., (R),5 was evident from the similarity of their
CD spectra, which showed positive Cotton effects at 255-
270 nm (Figure 1). By contrast, the CD spectrum of

sambunigrin (4), which has the (S) configuration of the
cyanohydrin center,5 was different, being akin to that of
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(12) Passiedulin (1) (23 mg isolated from 147 g of dry plant material by
silica gel chromatography and repeated preparative HPLC on a C18 phase
with H2O/CH3OH 7:3): HR MALDI FT MS m/z (rel intensity) 318.0958
(100%, [MNa]+), [C14H17NO6 + Na]+ requires 318.0948; [R]25

D -69° (c
0.24, methanol);1H NMR (400 MHz, CD3OD) δ 3.42 (1H, dd,J ) 7.9
and 3.0 Hz, H-2′), 3.49 (1H, dd,J ) 9.5 and 2.9 Hz, H-4′), 3.63-3.71
(2H, m, H-5′ and H-6′A), 3.85-3.92 (1H, m, H-6′B), 4.02 (1H, t,J ) 3.0
Hz, H-3′), 4.61 (1H, d,J ) 7.9 Hz, H-1′), 5.90 (1H, s, benzylic H), 7.43-
7.47 (3H, m) and 7.50-7.56 (2H, m) (aromatic protons) (the assignment is
based on COSY correlations);13C NMR (100 MHz, CD3OD) δ 63.2
(C-6′), 68.5 (benzylic C), 68.9 (C-4′), 72.1 (C-2′), 73.0 (C-3′), 75.9 (C-5′),
100.1 (C1′), 119.7 (CN), 129.0 and 130.2 (orthoandmetaC), 130.9 (para
C), 135.2 (ipsoC) (the assignment is based on a1H,13C-correlation).
Passiedulin tetraacetate (obtained by overnight treatment of 2 mg of1 with
acetic anhydride and pyridine, 1:1):1H NMR (400 MHz, CDCl3) δ 2.00,
2.01, 2.11 and 2.12 (acetyl CH3), 4.05 (1H, o,J ) 10.0, 4.5 and 2.7 Hz,
H-5′), 4.18-4.26 (2H, m, H-6′), 4.89 (1H, d,J ) 8.2 Hz, H-1′), 4.96-5.00
(2H, m, H-2′ and H-4′), 5.53 (1H, s, benzylic H), 5.67 (1H, t,J ) 3.0 Hz,
H-3′), 7.43-7.50 (5H, m, aromatic H);13C NMR (100 MHz, CDCl3) δ
20.5 (2C), 20.7 and 20.8 (acetyl CH3), 62.1 (C-6′), 66.0 (C-4′), 68.2 (C-
3′), 68.7 (benzylic C), 68.8 (C-2′), 70.6 (C-5′), 97.3 (C-1′), 116.9 (CN),
127.5 and 129.1 (orthoandmetaC), 130.2 (paraC), 132.5 (ipsoC), 168.8,
169.0, 169.6 and 170.8 (acetyl CO). Voucher specimen (DFHJJ9) of the
plant used in this work was deposited in Herbarium C (Botanical Museum,
University of Copenhagen, Copenhagen).

(13) Compound2 (4 mg): HR MALDI FT MS m/z (rel intensity)
293.0988 (100%, [MNa]+), [C13H18O6 + Na]+ requires 293.0996;1H NMR
(400 MHz, CD3OD) δ 3.37 (1H, dd,J ) 7.9 and 3.0 Hz, H-2′), 3.49 (1H,
dd,J ) 9.5 and 3.0 Hz, H-4′), 3.64-3.72 (2H, m, H-5′ and H-6′A), 3.85-
3.92 (1H, m, H-6′B), 4.02 (1H, t,J ) 3.0 Hz, H-3′), 4.72 (1H, d,J ) 7.9
Hz, H-1′), 4.64 and 4.92 (each 1H, d,J ) 12.0 Hz, benzylic CH2), 7.27
(1H, distorted t, H-4), 7.32 (2H, distorted t, H-3 and H-5), 7.41 (2H, distorted
d, H-2 and H-5);13C NMR (100 MHz, CD3OD) δ 63.2 (C-6′), 69.1 (C-4′),
71.8 (benzylic C), 72.5 (C-2′), 73.0 (C-3′), 75.6 (C-5′), 101.0 (C-1′), 128.7-
129.3 (aromatic).

Figure 1. CD spectra (methanol, ambient temperature) of pass-
iedulin (1), prunasin (3), sambunigrin (4), and benzylD-gluco-
pyranoside (5).
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benzylâ-D-glucopyranoside (5) (Figure 1).14 The CD spec-
trum of 2 (not shown) was closely similar to that of5.

Cotton effects at about 255-270 nm in aromatic com-
pounds15 are associated with transition from the lowest
energy vibrational mode in the electronic ground state to the
fully symmetric vibrational modes in the1Lb electronically
excited state of the benzene chromophore and are the result
of vibrational borrowing from allowed1La transitions.16 The
observed Cotton effects in the CD spectra of1, 3, and4
(Figure 1) appear to originate from chiral perturbations
caused not only by the cyanohydrin center, which would be
expected to be the dominating contribution, but also by the
sugar residue. The existence of the latter interaction is
apparent in the spectrum of5 (Figure 1). Although chiral
perturbation of the benzene chromophore by chiral centers
separated from the benzene ring by a methylene group has
been extensively studied and shown to be useful for
configurational assignments,17 the CD spectrum of benzyl
â-D-glucopyranoside (5), in which the chiral center is three
bonds away from the benzene chromophore, has to our
knowledge not been reported prior to this work. The
similarity of the CD spectra of4 and 5 is surprising and
appears to reflect a diminished contribution of the (S)-
cyanohydrin center in4, presumably owing to conformational
effects. On the other hand, the similarity of the spectra of1
and3 demonstrates the lack of significant influence of the
orientation of the C-3′ hydroxy group in the (R)-series. Thus,
we expect that Cotton effects associated with the1Lb

transition in benzaldehyde cyanohydrin glycosides may be
useful for configurational assignments irrespective of the
nature of the sugar residue present, as long as the absolute
configuration of the anomeric carbon and conformation of
the glycosidic bond remain the same.18

The reported presence of passiedulin (1) and2 in Passi-
flora edulis raises several questions in the context of
biochemistry and biology of cyanogenic glycosides. The
function of a â-D-glucopyranoside such as3 as a plant
defense substance depends on the presence in the same plant
tissue of an often highly specializedâ-glucosidase.5,19 The
enzyme catalyses hydrolysis of the cyanogenic glycoside with
formation of hydrogen cyanide. Whether passiedulin (1) can
be regarded as a defense compound depends on whether
Passiflora eduliscontains an allosidase capable of releasing
cyanide from1. In principle,1 and 2 may be formed by
enzymatic epimerization of the correspondingâ-D-gluco-
pyranosides, or viaD-allopyranosyl transfer to the corre-
sponding alcohols from UDP-allose. These points and the
possible evolutionary advantage of accumulating1 as op-
posed to3 have yet to be clarified.
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(14) Sambunigrin (4) was isolated fromSambucus nigraL. (Caprifolia-
ceae),14aand benzylâ-D-glucopyranoside (5) was synthesized by enzymatic,
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